Sclerostin a biomarker in renal pediatric bone disease
The Biomedica SCLEROSTIN ELISA Assay Kit (# BI-20492) was utilized in a recent publication assessing the associations between serum and bone sclerostin levels and biomarkers of bone turnover and bone histomorphometry. Read more: Sclerostin, Osteocytes, and Wnt Signaling in Pediatric Renal Osteodystrophy.
Sclerostin (SOST) ELISA (cat. no. BI-20492)
- Most referenced Sclerostin ELISA in over 290 citations
- Low sample volume – 20µl / well
- Validation following international guidelines
Sclerostin a biomarker in renal pediatric bone disease
Sclerostin, Osteocytes, and Wnt Signaling in Pediatric Renal Osteodystrophy. Laster M. et al., Nutrients. 2023 Sep 25;15(19):4127. doi: 10.3390/nu15194127. PMID: 37836411; PMCID: PMC10574198 . link to full text
Abstract
The pathophysiology of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not well understood. Specific factors secreted by osteocytes are elevated in the serum of adults and pediatric patients with CKD-MBD, including FGF-23 and sclerostin, a known inhibitor of the Wnt signaling pathway. The molecular mechanisms that promote bone disease during the progression of CKD are incompletely understood. In this study, we performed a cross-sectional analysis of 87 pediatric patients with pre-dialysis CKD and post-dialysis (CKD 5D). We assessed the associations between serum and bone sclerostin levels and biomarkers of bone turnover and bone histomorphometry. We report that serum sclerostin levels were elevated in both early and late CKD. Higher circulating and bone sclerostin levels were associated with histomorphometric parameters of bone turnover and mineralization. Immunofluorescence analyses of bone biopsies evaluated osteocyte staining of antibodies towards the canonical Wnt target, β-catenin, in the phosphorylated (inhibited) or unphosphorylated (active) forms. Bone sclerostin was found to be colocalized with phosphorylated β-catenin, which suggests that Wnt signaling was inhibited. In patients with low serum sclerostin levels, increased unphosphorylated “active” β-catenin staining was observed in osteocytes. These data provide new mechanistic insight into the pathogenesis of CKD-MBD and suggest that sclerostin may offer a potential biomarker or therapeutic target in pediatric renal osteodystrophy.
Related Literature
FGF-23 and sclerostin in serum and bone of CKD patients. Lima F, Monier-Faugere MC, Mawad H, David V, Malluche HH. Clin Nephrol. 2023 May;99(5):209-218. doi: 10.5414/CN111111. PMID: 36970967; PMCID: PMC10286735. (Biomedica Sclerostin ELISA Assay Kit, cat. no. BI-20492 citation)
Sclerostin and Dickkopf-1 in renal osteodystrophy. Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH. Clin J Am Soc Nephrol. 2011 Apr;6(4):877-82. doi: 10.2215/CJN.06550810. Epub 2010 Dec 16. PMID: 21164019; PMCID: PMC3069382. (Biomedica Sclerostin ELISA Assay Kit, cat. no. BI-20492 citation)
Bone Disorders in Pediatric Chronic Kidney Disease: A Literature Review. Capossela L, Ferretti S, D’Alonzo S, Di Sarno L, Pansini V, Curatola A, Chiaretti A, Gatto A.Biology (Basel). 2023 Nov 2;12(11):1395. doi: 10.3390/biology12111395. PMID: 37997994; PMCID: PMC10669025.