LecChip™ – Lectin Microarray | GK-LECCHIP
-
Category number
GK-LECCHIP
-
Method
Lectin microarray detecting labeled carbohydrates/labeled cells
-
Sample type
Purified and crude samples, e.g. cell/tissue extracts, living cells, virus particles, cell culture supernatants, serum, urine
-
Sample volume
Cells: 3×106 cells
Purified/crude sample: 20 µl (50 µg/ml protein in PBS)
-
Assay time
Cells: ~ 1 h
Purified/crude samples: overnight
-
Sensitivity
LOD: 100 pg/ml glycoprotein, 100 pM glycan, 103 cells
-
Use
Research use only.
-
Specificity
N- and O-glycans; occurence is tested by binding to lectins
Product Overview
Lectin microarrays using LecChip™ allows the highly sensitive analysis of carbohydrates in various sample types (purified and crude samples, e.g. cell/tissue extracts, living cells, virus particles, cell culture supernatants, serum, urine). Compared to MS-based methods, it requires less sample processing steps and is about 100 times more sensitive. Although it cannot identify glycan structures perfectly, it is a powerful system to identify differences of glycan structures like glycan isomers in a small amount of sample. Most importantly, it is possible to simultaneously obtain data about O- as well as N-glycans.
Analysis of LecChip™ requires an evanescent-field fluorescence excitation scanner like GlycoStation™ or GlycoLite™2200.
Principle of the LecChip™
The principle of glycan structure profiling analysis using LecChip™ is based on the lectin to glycan binding affinity. Lectins are glycan binding proteins and each lectin will only bind to particular glycans. A LecChip™ contains 45 different lectins immobilized on a slide glass in an X-Y array. Cy3 labeled glycoproteins are applied to the LecChip™ surface which then bind to specific lectins on the chip. The LecChip™ is then analyzed with an evanescent-field fluorescence excitation scanner like GlycoStation™ or GlycoLite™2200 capable of generating an evanescent-field above the LecChip™ array. The Cy3 molecules attached to glycans that have successfully bound to lectins will fluoresce and the total LecChip™ fluorescence pattern can be captured with the scanner. Differential data analysis it best accomplished with the GlycoStation™ ToolsPro Ver.2.0 software.
The evanescent-field fluorescent excitation method used to excite the Cy3 marker on the glycans is an essential enabling technology as it allows for detection of very weak molecular interactions. Lectin-glycan interactions are known to be relatively weak compared to antigen-antibody and biotin-avidin interactions. If a washing process is applied to the LecChip™ to remove non-lectin binding redundant glycoproteins, many of the specifically bound glycans are also lost. Fortunately, evanescent-field fluorescence excitation allows for generation of lectin-glycan affinity data from unwashed samples by taking advantage of the higher signal strength of specifically bound glycans. The evanescent-field is formed on the surface of the LecChip™ when light enters into the slide glass from the sidewall and propagates through the glass. This is known as the principle of internal reflection mode. The evanescent field that is formed has a depth equal to the wavelength of the light and the field strength decreases exponentially with the distance away from the slide surface. Cy3-tagged glycans floating above the slide glass in a liquid phase exhibit a relatively low level of excitation as they are in the weakest part of the evanescent-field. By contrast, Cy3-tagged glycans that interact with the lectins located on the LecChip™ are contained in the stronger part of the evanescent field and are effectively excited. Hence, this technology allows monitoring of very weak molecular interactions directly from a liquid phase without washing of the sample.
Components
Contents |
Description |
Quantity |
LecChip™ |
Glass slide with 45 different immobilized lectins*, spotted in triplicates |
1 x chip |
* Lectins spotted on LecChips™:
No. |
Lectin (origin) |
Reported glycan selectivity |
1 |
LTL (Lotus tetragonolobus) |
Fucα1-3(Galβ1-4)GlcNAc (Lewis x), Fucα1-2Galβ1-4GlcNAc (H-type 2) |
2 |
PSA (Pisum sativum) |
Fucα1-6GlcNAc (Core Fuc) , α-Man |
3 |
LCA (Lens culinaris) |
Fucα1-6GlcNAc (Core Fuc), α-Man |
4 |
UEA-I (Ulex europaeus) |
Fucα1-2Galβ1-4GlcNAc (H-type 2) |
5 |
AOL (Aspergillus oryzae) |
Fucα1-6GlcNAc (Core Fuc), Fucα1-2Galβ1-4GlcNAc (H-type 2) |
6 |
AAL (Aleuria aurantia) |
Fucα1-3(Galβ1-4)GlcNAc (Lewis x), Fucα1-6GlcNAc (Core Fuc) |
7 |
MAL_I (Maackia amurensis) |
Siaα2-3Galβ1-4GlcNAc |
8 |
SNA (Sambucus nigra) |
Siaα2-6Gal/GalNAc |
9 |
SSA (Sambucus sieboldiana) |
Siaα2-6Gal/GalNAc |
10 |
TJA-I (Trichosanthes japonica) |
Siaα2-6Gal/GalNAc, HSO3(-) -6Gal b1-4GlcNAc |
11 |
PHAL (Phaseolus vulgaris) |
tri/tetra-antennary complex-type N-glycan |
12 |
ECA (Erythrina cristagalli) |
Galβ1-4GlcNAc (up with increasing the number of terminal Gal), no affinity for fully sialylated N-type, fully agalactosylated N-type |
13 |
RCA120 (Ricinus communis) |
Galβ1-4GlcNAc (up with increasing the number of terminal Gal), Galb1-3Gal (weak), no affinity for agalactosylated N-type |
14 |
PHAE (Phaseolus vulgaris) |
bi-antennary complex-type N-glycan with outer Gal and bisecting GlcNAc, no affinity for fully sialylated N-type |
15 |
DSA (Datura stramonium) |
(GlcNAcβ1-4)n (Chitin), tri/tetra-antennary N-glycan |
16 |
GSL-II (Griffonia simplicifolia) |
agalactosylated tri/tetra antennary glycans, GlcNAc, no affinity for fully galactosylated or sialylated N-type |
17 |
NPA (Narcissus pseudonarcissus) |
High-Mannose including Manα1-6Man |
18 |
ConA (Canavalia ensiformis) |
High-Mannose including Manα1-6(Manα1-3)Man |
19 |
GNA (Galanthus nivalis) |
High-Mannose including Manα1-3Man |
20 |
HHL (Hippeastrum hybrid) |
High-Mannose including Manα1-3Man or Manα1-6Man |
21 |
ACG (mushroom, Agrocybe cylindracea) |
Gal b1-3Gal, Siaα2-3Galβ1-4GlcNAc |
22 |
TxLCI (Tulipa gesneriana) |
Manα1-3(Manα1-6)Man, bi/tri-antennary complex-type N-glycan, GalNAc |
23 |
BPL (Bauhinia purpurea) |
Galβ1-3GalNAc (up with Lewis x, down with Core Fuc), GalNAc |
24 |
TJA-II (Tanthes japonica) |
Fucα1-2Galβ1-> or GalNAcβ1-> groups at their non-reducing terminals |
25 |
EEL (Euonymus europaeus) |
Gala1-3Galb1-4GlcNAc, Fuca1-2Galb1-3GlcNAc (H antigen) |
26 |
ABA (fungus, Agaricus bisporus) |
Galβ1-3GalNAc, GlcNAc |
27 |
LEL (tomato, Lycopersicon esculentum) |
(GlcNAcβ1-4)n (Chitin), (Galb1-4GlcNAc)n (polylactosamine) |
28 |
STL (potato, Solanum tuberosum) |
(GlcNAcβ1-4)n (Chitin) oligosaccharide containing GlcNAc and MurNAc |
29 |
UDA (Urtica dioica) |
GlcNAcβ1-4GlcNAc (Chitin), High-Mannose (3 to High, up with increasing the number of Man) |
30 |
PWM (pokeweed, Phytolacca Americana) |
(GlcNAcβ1-4)n (Chitin) |
31 |
Jacalin (Artocarpus integrifolia) |
GlcNAcb1-3GalNAc (Core3), Siaa2-3Galb1-3GalNAc (sialyl T), Galb1-3GalNAc (T-antigen), a-GalNAc (Tn-antigen) |
32 |
PNA (peanut, Arachis hypogaea) |
Galβ1-3GalNAc |
33 |
WFA (Wisteria floribunda) |
GalNAcβ1-4GlcNAc (LacdiNAc), Galβ1-3(-6)GalNAc |
34 |
ACA (Amaranthus caudatus) |
Galβ1-3GalNAc (T-antigen), Siaa2-3Galb1- GalNAc (sialyl T) |
35 |
MPA (Maclura pomifera) |
a-GalNAc (Tn-antigen), Galβ1-3GalNAc (T-antigen) |
36 |
HPA (snail, Helix pomatia) |
α-GalNAc |
37 |
VVA (Vicia villosa) |
GalNAcb1-4Gal, GalNAcb1-3Gal, a-GalNAc, |
38 |
DBA (Dolichos biflorus) |
Blood group A, GalNAcα1-3GalNAc, GalNAcb1-4(Siaa2-3)Galb1-4Glc (GM2) |
39 |
SBA (soybean, Dolichos biflorus) |
α- or β-linked GalNAc, Gala1-4Gal-Glc |
40 |
Calsepa (Calystegia sepium) |
Galactosylated bianntenary N-type with bisecting GlcNAc (galacto > agalacto, down with Core Fuc), High-Mannose (Man2–6) |
41 |
PTL-I (Psophocarpus tetragonolobus) |
α-GalNAc, Gala1-3(Fuca1-2)Gal (B-antigen) |
42 |
MAH (Maackia amurensis) |
Siaα2-3Galβ1-3(Siaα2-6)GalNAc (disialyl-T) |
43 |
WGA (wheat germ, Triticum aestivum) |
(GlcNAcβ1-4)n (Chitin), Hybrid type N-glycan, Sia |
44 |
GSL-I A4 (Griffonia simplicifolia) |
α-GalNAc |
45 |
GSL-I B4 (Griffonia simplicifolia) |
α-Gal |
Glycan Profiling of Crude Sample
1. Sample preparation and fractionation
1-1. | Wash cells (5 × 106) by PBA several times and store at -80℃. |
1-2. | Fractionate the cells into membrane and cytoplasm fractions by using a commercial Kit |
2. Cy3 labeling
2-1. | Measure protein concentration with a commercial Micro BCA Protein Assay Reagent Kit (reaction time = 2 h). |
2-2. | Prepare 20 µl sample volume with a concentration of 50 µg/ml using PBS, then mix with Cy3 Mono-Reactive dye 100 µg labeling. |
2-3. | Incubate for 1 h in a dark place at R.T. |
2-4. | Add 300 µl TBS into a gel filtration column, then centrifuge at 1,500×g, for 1 min at 4℃. |
2-5. | Repeat two times. |
2-6. | Add the whole sample prepared in 2-3 and 25 µl TBS into the gel filtration column prepared at 2-5, then centrifuge at 1,500 × g, for 2 min, at 4℃, and remove excess Cy3. |
3. Measurement
3-1. | Dilute samples with a Probing Solution (in a range from 2µ g/mL to 31.25 ng/mL). |
3-2. | Wash LecChip™ with a Probing Solution three times, then apply samples into wells (100 µL/well). |
3-3. | Incubate LecChip™ at 20℃ over night. |
3-4. | Measure fluorescence patterns without any washing of LecChip™ by GlycoStation™ Reader 1200. |
3-5. | Analyse the results by Array-Pro™ Analyzer and GlycoStation™ Tools. |
4. Protocol Booklet
Glycan Profiling of Secreted Proteins
1. Enrichment of secreted proteins and buffer exchange
1-1. | Collect 10 ml of culture supernatant and store it at -80℃. |
1-2. | Melt the sample from step 1-1, and apply it to a barrier filter. Centrifuge it at 4,000 × g, at 4℃, and thereby enrich the sample to less than 500 µl. |
1-3. | Add 14.5 ml of PBS to the sample. Centrifuge the sample at 4,000 × g, at 4℃, and enrich the sample to less than 500 µl (enrichment and buffer exchange). |
1-4. | Repeat step 1-3. |
1-5. | Add 14.5 ml of PBS to the 1-4 result. Centrifuge the sample at 4,000 × g, at 4℃, enrich the sample to less than 250 µL, and recover the sample. |
1-6. | Prepare 500 µl sample adding PBS to the 1-5 result. |
2. Cy3 labeling
2-1. | Measure protein concentration with a commercial Micro BCA Protein Assay Reagent Kit (reaction time = 2 h). |
2-2. | Prepare 20 µl sample volume with a concentration of 50 µg/ml using PBS, then mix with Cy3 Mono-Reactive dye 100 µg labeling. |
2-3. | Incubate for 1 h in a dark place at R.T. |
2-4. | Add 300 µl TBS into a gel filtration column, then centrifuge at 1,500×g, for 1 min at 4℃. |
2-5. | Repeat two times. |
2-6. | Add the whole sample prepared in 2-3 and 25 µl TBS into the gel filtration column prepared at 2-5, then centrifuge at 1,500 × g, for 2 min, at 4℃, and remove excess Cy3. |
3. Measurement
3-1. | Dilute samples with a Probing Solution (in a range from 2 µg/mL to 31.25 ng/mL). |
3-2. | Wash LecChip™ by a Probing Solution three times, then apply samples into wells (100 µl/well). |
3-3. | Incubate LecChip™ at 20℃ over night. |
3-4. | Measure fluorescence patterns without any washing of LecChip™ by GlycoStation™ Reader 1200. |
3-5. | Analyse the results by Array-Pro™ Analyzer and GlycoStation™ Tools. |
4. Protocol Booklet
Glycan Profiling of Living Cells
1. Collection of cell sample
1-1. | Retrieve 3 × 106 cells and wash those with serum-free culture media. |
2. Fluorescent labeling
2-1. | Add 3 ml CellTracker™ to the cells that were suspended with serum-free culture media. |
2-2. | Stir the sample for 15 min at 37℃ in the dark. |
2-3. | Wash the cells with 1% BSA/PBS after the incubation. |
3. Measurement
3-1. | Dilute the dyed cells with 1% BSA/PBS. |
3-2. | Wash the LecChip™ three times with Probing Solution, then add samples into wells(100 ml / well). |
3-3. | Incubate the LecChip™ for 30 min at 4℃. |
3-4. | Put the incubated LecChip™ into the 50 ml tube that filled with PBS, then stand for 30 min with the well-side below. The cells that doesn't bind with the lectin are removed by gravity. |
3-5. | Scan the LecChip™ with GlycoStation™ Reader 1200. |
3-6. | Analyze the results with Array-Pro™ Analyzer and GlycoStation™ Tools. |
4. Protocol Booklet
Background
Glycosylation is a common posttranslational modification of proteins and influences parameters like protein folding, targeting, ligand recognition, stability, immunogenicity, biological activity, etc. Glycans play a significant biological role in mainly four medical areas: cancer, immunology, infectious diseases and regenerative medicine. Here, a quick, simple and highly sensitive method for glycan profile analysis can accelerate the development of advanced biomarkers, therapeutic proteins, probiotic methodologies as well as the characterization of stem cell (iPS, ES, and MSC).
Applications
-
Detection of Changes in Glycosylation Pattern
-
Supporting Quality Control Activities (Batch-to-Batch Variation)
-
Comparability Testing of Biosimilars
-
Monitoring of Biologicals (e.g. Protein Drugs)
-
Host Cell Characterization
-
Glyco-Biomarker Discovery
-
Characterization of Stem Cells & Differentiated Cells
-
Advanced Histochemistry (e.g. Marker Definition)
-
Production Process Optimization (IPC testing)
Glycan Profiling & Lectin Microarray – Applications
Lectin Microarray and Therapeutic Proteins
FDA publication: Glycan analysis of therapeutic glycoproteins. L. Zhang, S. Luo, and B. Zhang, mAbs, 2015; 8:2, 205-215.
FDA publication: The use of lectin microarray for assessing glycosylation of therapeutic proteins. L. Zhang, S. Luo, and B. Zhang, mAbs, 2015; 3: 524-535.
Application of Lectin Array Technology for Biobetter Characterization: Its Correlation with FcγRIII Binding and ADCC. Roucka, Markus, Klaus Zimmermann, Markus Fido, und Andreas Nechansky. Microarrays, 2017; 6, 1
Glycosylation Pattern of Biotechnologically Produced Proteins - Lectin Array Technology as a Versatile Tool for Screening? Zimmermann, Fido, und Roucka. Medical Research Archives, 2018; 6: 3.
Exosomes
Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Shimoda A, Tahara Y, Sawada SI, Sasaki Y, Akiyoshi K. Biochem Biophys Res Commun. 2017; 23;491(3):701-707.
Diabetic Nephropathy
Urinary Fetuin-A Is a Novel Marker for Diabetic Nephropathy in Type 2 Diabetes Identified by Lectin Microarray. Kentaro Inoue,Jun Wada ,Jun Eguchi,Atsuko Nakatsuka,Sanae Teshigawara,Kazutoshi Murakami,Daisuke Ogawa,Takahiro Terami,Akihiro Katayama,Atsuhito Tone,Izumi Iseda,Kazuyuki Hida,Masao Yamada,Tomohisa Ogawa,Hirofumi Makino. Plos One, 2013; 8: 10: e77118.
Cancer
A Cancer-specific Monoclonal Antibody Recognizes the Aberrantly Glycosylated Podoplanin. Yukinari Kato & Mika Kato Kaneko. Scientific Reports; 2014; 4: 5924.
Lectin microarray technology identifies specific lectins related to lymph node metastasis of advanced gastric cancer. Yamashita K, Kuno A, Matsuda A, Ikehata Y, Katada N, Hirabayashi J, Narimatsu H, Watanabe M. Gastric Cancer, 2016; 9(2):531-542.
Lectin Microarray-Based Sero-Biomarker Verification Targeting Aberrant O-Linked Glycosylation on Mucin 1. Matsuda A, Kuno A, Nakagawa T, Ikehara Y, Irimura T, Yamamoto M, Nakanuma Y, Miyoshi E, Nakamori S, Nakanishi H, Viwatthanasittiphong C, Srivatanakul P, Miwa M, Shoda J, Narimatsu H. Anal Chem, 2015; 21;87(14):7274-81.
Retinal degradation:
Lectin microarray profiling and relative quantification of glycome associated with proteins of neonatal wt and rd1 mice retinae. Ahuja S. Invest Ophthalmol Vis Sci, 2013: 7;54(5):3272-80.
Tissue
A standardized method for lectin microarray-based tissue glycome mapping. Zou X, Yoshida M, Nagai-Okatani C, Iwaki J, Matsuda A, Tan B, Hagiwara K, Sato T, Itakura Y, Noro E, Kaji H, Toyoda M, Zhang Y, Narimatsu H, Kuno A. Sci Rep, 2017; 6;7:43560.
Immune response
Fucosylation is associated with the malignant transformation of intraductal papillary mucinous neoplasms: a lectin microarray-based study. Watanabe K, Ohta M, Yada K, Komori Y, Iwashita Y, Kashima K, Inomata M. Surg Today, 2016; 46(10):1217-23.
Liver disease
A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Atsushi Kuno, Yuzuru Ikehara, Yasuhito Tanaka, Kiyoaki Ito, Atsushi Matsuda, Satoru Sekiya, Shuhei Hige, Michiie Sakamoto, Masayoshi Kage, Masashi Mizokami & Hisashi Narimatsu. Scientific Reports, 2013; 3: 1065.
Dysplasia in Barrett's esophagus
Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Bird-Lieberman EL, Neves AA, Lao-Sirieix P, O'Donovan M, Novelli M, Lovat LB, Eng WS, Mahal LK, Brindle KM, Fitzgerald RC. Nat Med, 2012; 15;18(2):315-21.
Review-Applications
Lectin microarrays: concept, principle and applications.Jun Hirabayashi, Masao Yamada, Atsushi Kuno and Hiroaki Tateno. Chem Soc Rev, 2013; 42: 4443-4458.
Lectin-based structural glycomics: a practical approach to complex glycans. Hirabayashi J, Kuno A, Tateno H. Electrophoresis, 2011; 32(10):1118-28.
- Sialylation and fucosylation modulate inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection.
Giron LB, Tanes CE, Schleimann MH, Engen PA, Mattei LM, Anzurez A, Damra M, Zhang H, Bittinger K, Bushman F, Kossenkov A, Denton PW, Tateno H, Keshavarzian A, Landay AL, Abdel-Mohsen M. Mucosal Immunol. 2020 Mar 9. PMID: 32152415 PMCID: PMC7434596 doi: 10.1038/s41385-020-0279-5.
PMID:32152415
- Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses.
Hiono, T., Matsuda, A., Wagatsuma, T., Okamatsu, M., Sakoda, Y., Kuno, A., 2019. Virology 15;527:132–140.
PMID:30503907
- Altered plasma protein glycosylation in a mouse model of depression and in patients with major depression.
Yamagata, S. Uchida, K. Matsuo, K. Harada, A. Kobayashi, M. Nakashima, F. Higuchi, T. Watanuki, T. Matsubara, and Y. Watanabe, J. of Affective Disorders, June 2018, Vol.233, pp-79-85, PMID: 29786478. doi: 10.1016/j.jad.2017.08.057
PMID:29786478
- Analysis of a lectin microarray identifies altered sialylation of mouse serum glycoproteins induced by whole-body radiation exposure.
Iizuka, D., Izumi, S., Suzuki, F., Kamiya, K., 2018. J Radiat Res. 60(2):189–196.
- Characteristic glycopeptides associated with extreme human longevity identified through plasma glycoproteomics.
Miura, Y., Hashii, N., Ohta, Y., Itakura, Y., Tsumoto, H., Suzuki, J., Takakura, D., Abe, Y., Arai, Y., Toyoda, M., Kawasaki, N., Hirose, N., Endo, T., 2018. Biochimica et Biophysica Acta (BBA) - General Subjects 1862(6):1462–1471.
PMID:29580922
- Glycosyltransferase gene expression identifies a poor prognostic colorectal cancer subtype associated with mismatch repair deficiency and incomplete glycan synthesis.
Noda, M., Okayama, H., Tachibana, K., Sakamoto, W., Saito, K., Min, A.K.T., Ashizawa, M., Nakajima, T., Aoto, K., Momma, T., Katakura, K., Ohki, S., Kono, K., 2018. Clin Cancer Res clincanres. 24(18):4468-4481.
PMID:29844132
- Possible role of sialylation of retinal protein glycans in the regulation of electroretinogram response in mice.
Ahuja, S., 2017. Int J Ophthalmol 10(8):1217–1222.
PMID:28861345; PMC5554838
- Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1.
Matsuda, A., Higashi, M., Nakagawa, T., Yokoyama, S., Kuno, A., Yonezawa, S., Narimatsu, H., 2017. Laboratory Investigation 97(7):1103–1113.
PMID:28581490
- Application of Lectin Array Technology for Biobetter Characterization: Its Correlation with FcγRIII Binding and ADCC.
Roucka, M., Zimmermann, K., Fido, M., Nechansky, A., 2017. Microarrays 6(1):1.
PMID:28029136
- Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells.
Shimoda, A., Tahara, Y., Sawada, S., Sasaki, Y., Akiyoshi, K., 2017. Biochemical and Biophysical Research Communications 491(3):701–707.
PMID:28751214
- Glycan profiling using formalin-fixed, paraffin-embedded tissues: Hippeastrum hybrid lectin is a sensitive biomarker for squamous cell carcinoma of the uterine cervix.
Tozawa‐Ono, A., Kubota, M., Honma, C., Nakagawa, Y., Yokomichi, N., Yoshioka, N., Tsuda, C., Ohara, T., Koizumi, H., Suzuki, N., 2017. Journal of Obstetrics and Gynaecology Research 43(8):1326–1334.
PMID:28585749
- A standardized method for lectin microarray-based tissue glycome mapping.
Zou, M. Yoshida, C. Nagai-Okatani, J. Iwaki, B. Tan, K. Hagiwara, T.Sato, Y. Itakura, E.Noro, H. Kaji, M. Toyoda, Y. Zhang, H. Narimatsu, and A. Kuno, Sci. Rep., 2017 Mar 6;7:43560.
PMCID: PMC5337905 / doi: 10.1038/srep43560
PMID:28262709
- Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.
Zhao, R., Qin, W., Qin, R., Han, J., Li, C., Wang, Y., Xu, C., 2017. Clinical Proteomics 14:20.
PMID:28546799
- Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.
Nagai-Okatani, C., Minamino, N., 2016. PLOS ONE 11(6):e0150210.
PMID:27281159
- Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis.
Takeshita, M., Kuno, A., Suzuki, K., Matsuda, A., Shimazaki, H., Nakagawa, T., Otomo, Y., Kabe, Y., Suematsu, M., Narimatsu, H., Takeuchi, T., 2016. Arthritis Research & Therapy 18(1):112.
PMID:27209430
- Fucosylation is associated with the malignant transformation of intraductal papillary mucinous neoplasms: a lectin microarray-based study.
Watanabe, K., Ohta, M., Yada, K., Komori, Y., Iwashita, Y., Kashima, K., Inomata, M., 2016. Surg Today 46(10):1217–1223.
PMID:26754572
- The use of lectin microarray for assessing glycosylation of therapeutic proteins.
Zhang L, Luo S, Zhang B. 2016. MAbs. 8(3):524–535.
PMID:PMC4966825
- Integrated glycomic analysis of ovarian cancer side population cells.
Zhao, R., Liu, X., Wang, Y., Jie, X., Qin, R., Qin, W., Zhang, M., Tai, H., Yang, C., Li, L., Peng, P., Shao, M., Zhang, X., Wu, H., Ruan, Y., Xu, C., Ren, S., Gu, J., 2016. Clinical Proteomics 13:32.
PMID:27833472
- Decreased expression of Bauhinia purpurea lectin is a predictor of gastric cancer recurrence.
Futsukaichi, T., Etoh, T., Nakajima, K., Daa, T., Shiroshita, H., Shiraishi, N., Kitano, S., Inomata, M., 2015. Surg Today 45(10):1299–1306.
PMID:25753302
- Development and Applications of the Lectin Microarray.
Hirabayashi, J., Kuno, A., Tateno, H., 2015, in: Gerardy-Schahn, R., Delannoy, P., von Itzstein, M. (Eds.), SialoGlyco Chemistry and Biology II: Tools and Techniques to Identify and Capture Sialoglycans, Topics in Current Chemistry. Top Curr Chem. 367:105–124.
PMID:25821171
- Monoclonal Antibody LpMab-9 Recognizes O-glycosylated N-Terminus of Human Podoplanin.
Kaneko, M.K., Oki, H., Hozumi, Y., Liu, X., Ogasawara, S., Takagi, M., Goto, K., Kato, Y., 2015. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 34(5):310–317.
- Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis.
Nakajima, K., Inomata, M., Iha, H., Hiratsuka, T., Etoh, T., Shiraishi, N., Kashima, K., Kitano, S., 2015. Cancer Medicine 4(2):293–302.
PMID:25355679
- Development of Monoclonal Antibody LpMab-10 Recognizing Non-glycosylated PLAG1/2 Domain Including Thr34 of Human Podoplanin.
Ogasawara, S., Oki, H., Kaneko, M.K., Hozumi, Y., Liu, X., Honma, R., Fujii, Y., Nakamura, T., Goto, K., Takagi, M., Kato, Y., 2015. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 34(5):318–326.
PMID:26492619
- Lectin Microarray technology identifies specific lectins related to lymph node metastasis of advanced gastric cancer.
Yamashita, A. Kuno, A. Matsuda, Y. Ikehara, N. Katada, J. Hirabayashi, H. Narimatsu, M. Watanabe, Gastric Cancer, 2015 Apr.4,
PMID:25840959
- Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation.
Yamamoto-Hino, M., Muraoka, M., Kondo, S., Ueda, R., Okano, H., Goto, S., 2015. PNAS, 112(18):5809-5814.
PMID:25901322
- A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin.
Kato Y & Kaneko M. K., Sci Rep. 2014 Aug 1;4:5924.
PMCID: PMC4118152 / doi: 10.1038/srep05924
PMID:25080943
- Glycan profiling of gestational choriocarcinoma using a lectin microarray.
Kobayashi, K. Masuda, K. Banno, N. Kobayashi, K. Umene, Y. Nogami, K. Tsuji, A. Ueki, H. nomura, K. Sato, E. Tominaga, T. Shimizu, H. Saya, and D. Aoki, Oncol Rep. 2014 Mar;31(3):1121-6. doi: 10.3892/or.2014.2979. Epub 2014 Jan 14.
DOI: 10.3892/or.2014.2979
PMID:24424471
- Differential Glycan Analysis of an Endogenous Glycoprotein: Toward Clinical Implementation—From Sample Pretreatment to Data Standardization.
Kuno, A., Matsuda, A., Unno, S., Tan, B., Hirabayashi, J., Narimatsu, H., 2014, Methods in Molecular Biology. 1200:265–285.
PMID:25117242
- Lectin microarray technique for glycomic profiling of fungal cell surfaces.
<p A.Shibazaki and T. Gonoi, Methods Mol Biol., 2014; 1200: 1200-94.
doi: 10.1007/978-1-4939-1292-6_24
PMID:25117243
- A lectin array analysis for wild-type and α-Gal-knockout pig islets versus healthy human islets. Miyagawa, A. Maeda, S. Takeishi, T. Ueno, N. Usui, S. Matsumoto, T. Okitsu, M. Goto, and H. nagashima, Surg Today. 2013 Dec;43(12):1439-47. doi: 10.1007/s00595-013-0569-6
PMID:23549931
- Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma.
Kaji H, Ocho M, Togayachi A, Kuno A, Sogabe M, Ohkura T, Nozaki H, Angata T, Chiba Y, Ozaki H, Hirabayashi J, Tanaka Y, Mizokami M, Ikehara Y, Narimatsu H. J Proteome Res. 2013 Jun 7;12(6):2630-40. doi: 10.1021/pr301217b
PMID:23586699
- Lectin Microarray Profiling and Relative Quantification of Glycome Associated With Proteins of Neonatal wt and rd1 Mice Retinae.
Ahuja, S., 2013. Invest. Ophthalmol. Vis. Sci. 54(5):3272–3280.
PMID:23557737
- Lectin Microarrays: concept, principle and applications.
Hirabayashi, M. Yamada, A. Kuno and H. Tateno, Chem Soc Rev. 2013 May 21;42(10):4443-58; doi:10.1039/C3CS35419A
PMID:23443201
- Reconstruction of a robust glycodiagnostic agent supported by multiple lectin-assisted glycan profiling.
A.Kuno, T. Sato, H. Shimazaki, S. Unno, K. Saitou, K. Kiyohara, M. Sogabe, C. Tsuruno, Y. Takehama, Y. Ikehara, and H. Narimatsu, Proteomics Clin Appl., 2013 May3
doi: 10.1002/prca.201300010.
PMID:23640794
- Binding sugars: from natural lectins to synthetic receptors and engineered neolectins.
Arnaud, J., Audfray, A., Imberty, A., 2013. Chem. Soc. Rev. 42(11):4798–4813.
PMID:23353569
- Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma.
Kaji H, Ocho M, Togayachi A, Kuno A, Sogabe M, Ohkura T, Nozaki H, Angata T, Chiba Y, Ozaki H, Hirabayashi J, Tanaka Y, Mizokami M, Ikehara Y, Narimatsu H. J Proteome Res. 2013 Jun 7;12(6):2630-40.
doi: 10.1021/pr301217b
PMID: 23586699
- β-mannosyl linkages inhibit CAWS arteritis by negatively regulating dectin-2-dependent signaling in spleen and dendritic cells.
Hirata, N., Ishibashi, K., Sato, W., Nagi-Miura, N., Adachi, Y., Ohta, S., Ohno, N., 2013. Immunopharmacology and Immunotoxicology 35(5):594–604.
PMID:23981001
- A serum “sweet-doughnut” protein facilitaes fibrosis evaluation and therapy assessment in patients with viral hepatitis.
Kuno, Y. Ikehara, Y. Tanaka, K. Ito, A Matsuda, S. Sekiya, S. Hige, M. Sakamoto, M. Kaga, M. Mizokami and H. Narimatsu; Sci Rep. 2013;3:1065. PMCID: PMC3545220 / doi: 10.1038/srep01065.
PMID:23323209
- Urinary Fetuin-A Is a Novel Marker for Diabetic Nephropathy in Type 2 Diabetes Identified by Lectin Microarray.
Inoue, K., Wada, J., Eguchi, J., Nakatsuka, A., Teshigawara, S., Murakami, K., Ogawa, D., Terami, T., Katayama, A., Tone, A., Iseda, I., Hida, K., Yamada, M., Ogawa, T., Makino, H., 2013. PLOS ONE 8(10):e77118.
PMID:24143207
- Large-scale cell production of stem cells for clinical application using the automated cell processing machine.
Kami, D., Watakabe, K., Yamazaki-Inoue, M., Minami, K., Kitani, T., Itakura, Y., Toyoda, M., Sakurai, T., Umezawa, A., Gojo, S., 2013. BMC Biotechnology 13:102.
PMID:24228851
- Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma.
Matsuda, A., Kuno, A., Matsuzaki, H., Kawamoto, T., Shikanai, T., Nakanuma, Y., Yamamoto, M., Ohkohchi, N., Ikehara, Y., Shoda, J., Hirabayashi, J., Narimatsu, H., 2013. Journal of Proteomics 85:1–11.
PMID:23612463
- Glycan Profiling of Adult T-Cell Leukemia (ATL) Cells with the High Resolution Lectin Microarrays.
Iha and M. Yamada, “T-Cell Leukemia – Characteristics, Treatment and Prevention”, book edited by Mariko Tomita, ISBN 978-953-51-0996-9 2013 Feb; doi: 10.5772/55386.
- Multilectin-assisted fractionation for improved single-dot tissue glycome profiling in clinical glycoproteomics.
Tan, B., Matsuda, A., Zhang, Y., Kuno, A., Narimatsu, H., 2013. Mol. BioSyst. 10(2):201–205.
- Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells.
K. Hasehira, H. Tateno, Y. Onuma, Y. Ito, M. Asashima, and J. Hirabayashi, Mol Cell Proteomics., 2012 Dec;11(12):1913-23. PMCID: PMC3518133 / doi: 10.1074/mcp.M112.020586
PMID:23023295
- Glycan profiling of endometrial cancers using lectin microarray.
Y. Nishijima, M. Toyoda, M. Yamazaki-Inoue, T. Sugiyama, M. Miyazawa, T. Muramatsu, K. Nakamura, H. Narimatsu, A. Umezawa, and M. Mikami, Genes Cells, 2012 Oct. 17(10):826-36. doi: 10.1111/gtc.12003
PMID:22957961
- Lectin Array-Based Strategies for Identifying Metastasis-Associated Changes in Glycosylation.
Fry, S., Afrough, B., Leathem, A., Dwek, M., 2012, in: Dwek, M., Brooks, S.A., Schumacher, U. (Eds.), Metastasis Research Protocols, Methods in Molecular Biology. Humana Press, 878:267–272.
PMID:22674140
- Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides. E. Yasuda, H. Tateno, J. Hirabayashi, I. Iino, and T.Sako, Appl. Eviron Microbiol., 2011 Jul. 77(13), 4539-4546.PMCID: PMC3127709 / doi: 10.1128/AEM.00240-11
PMID:21602390
- A unique N-glycan on human transferrin in CSF: a possible biomarker for iNPH. S. Futakawa, K. Nara, M. Miyajima, A. Kuno, H. Ito, H. Kaji, K. Shirotani, T. Honda, Y. Tohyama, K. Hoshi, Y. Hanzawa, S. Kitazume, R. Imamaki, K. Furukawa, K. Tasaki, H. Arai, T. Yuasa, M. Abe, H. Arai, H. Narimatsu, and Y. Hashimoto, Neurobiol Aging. 2012 Aug;33(8):1807-15 doi: 10.1016/j.neurobiolaging.2011.02.023
PMID:21459485
- Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Bird-Lieberman EL, Neves AA, Lao-Sirieix P, O’Donovan M, Novelli M, Lovat LB, Eng WS, Mahal LK, Brindle KM, Fitzgerald RC., Nature Med. 2012 Jan 15. PMID: 22245781 / doi: 10.1038/nm.2616
PMID:22245781
- Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. YC. Wang, M. Nakagawa, I Garitaonandia, I. Slavin, G. Altun, RM Lacharite, KL Nozor, HT Tran, CL Lynch, TR Leonardo, Y. Lue, SE Peterson, LC Laurent, S. Yamanaka, and JF Loring, Cell Res. 2011 Nov;21(11):1551-63. PMCID: PMC3364725 / doi: 10.1038/cr.2011.148
PMID:21263457
- Lectin Microarray Profiling of Metastatic Breast Cancers. S. A. Fry, B. Afrough, H. J. Lomax-Browne, J. F. Timms, L. S. Velentzis, A. J.C. Leathem, Glycobiology. 2011 Aug;21(8):1060-70doi: 10.1093/glycob/cwr045
PMID: 21507904
- Pichia pastoris-produced mucin-type fusion proteins with multivalent O-glycan subsitution as targeting molecules for mannose-specific receptors of the immune system. A. Gustafsson, M. Sjoblom, L. Strindelius, T. Johansson, T. Fleckenstein, N. Chatzissavidou, L. Lindberg, J. Angstrom, U. Rova, and J. Holgersson, Glycobiology, 2011 Aug. 21(8), 1071-1086. doi: 10.1093/glycob/cwr046
PMID:21474492
- Potential Linkages Between the Inner and Outer Cellular States of Human Induced Pluripotent Stem Cells. S. Saito, Y. Onuma, Y. Ito, H. Tateno, M. Toyoda, H. Akutsu, K. Nishino, E. Chikazawa, Y. Fukawatase, Y. Miyagawa, H. Okita, N. Kiyokawa, Y. Shimma, A. Umezawa, J. Hirabayashi, K. Horimoto, and M. Asashima, BMC Syst Biol. 2011 Jun 20;5 Suppl 1(Suppl 1):S17 PMCID: PMC3121117 / doi: 10.1186/1752-0509-5-S1-S17
PMID:21689476
- Lectin-based structural glycomics: A practical approach to complex glycans. J. Hirabayashi, A. Kuno, H. Tateno, Electrophoresis, 2011 May;32(10):1118-28. doi: 10.1002/elps.201000650.
PMID:21544837
- LecT-Hepa: A triplex lectin–antibody sandwich immunoassay for estimating the progression dynamics of liver fibrosis assisted by a bedside clinical chemistry analyzer and an automated pretreatment machine.
Kuno, A., Ikehara, Y., Tanaka, Y., Saito, K., Ito, K., Tsuruno, C., Nagai, S., Takahama, Y., Mizokami, M., Hirabayashi, J., Narimatsu, H., 2011. Clinica Chimica Acta 412(19-20):1767–1772.
PMID:21645500
- Lectin microarray analysis of pluripotent and multipotent stem cells. M. Toyoda, M. Yamazaki-Inoue, Y. Itakura, A. Kuno, To. Ogawa, M. Yamada, H. Akutsu, Y. takahashi, S. Kanzai, H. Narimatsu, J. Hirabayashi, and A. Umezawa, Genes to Cells, Vol.16, Issue 1, 1-11, January (2011).doi: 10.1111/j.1365-2443.2010.01459.x
PMID:21155951
- Differential Glycan Profiling by Lectin Microarray Targeting Tissue Specimens.
Kuno, A., Matsuda, A., Ikehara, Y., Narimatsu, H., Hirabayashi, J., 2010, in: Fukuda, M. (Ed.), Methods in Enzymology, Glycomics. Academic Press, 478:165–179.
PMID:20816479
- Wisteria floribunda Agglutinin-Positive Mucin 1 is a Sensitive Biliary Marker for Human Cholangiocarcinoma. A. Matsuda, A. Kuno, H. Matsuzaki, T. Irimura, Y. Ikehara, Y. Zen, Y. Nakamura, M. Yamamoto, N. Ohkuhchi, J. Shoda, J. Hirabayasi, and H. Narimatsu, Hepatology. 2010 Jul;52(1):174-82. doi: 10.1002/hep.23654
PMID:20578261
- Transient expression of an IL-23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure. K. F. Suen, M. S. Turner, F. Gao, B. Liu, A. Althage, A. Slavin, W. Ou, E. Zuo, M. Eckart, T. Ogawa, M. Yamada, T. Tuntland, J. L. harris, and J. W. Trauger, Protein Expr Purif. 2010 May;71(1):96-102; doi: 10.1016/j.pep.2009.12.015
PMID:20045465
- A Strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. H. Narimatsu, H. Sawaki, A. Kuno, H. Kaji, H. Ito, and Y.Ikehara, FEBS J. 2010 Jan;277(1):95-105 doi:10.1111/j.1742-4658.2009.07430.x
PMID:19919546
- Survey of glycoantigens in cells from alpha1-3galactosyltransferase knockout pig using a lectin microarray. Miyagawa, S. Takeishi, A. Yamamoto, K. Ikeda, H. Matsunari, M. Yamada, M. Okabe, E. Miyoshi, M. Fukuzawa, and H. nagashima, Xenotransplantation, 2010 Jan. Vol 17(1), pp.61-70.
doi: 10.1111/j.1399-3089.2009.00565.x
PMID:20149189
- High levels of E4-PHA-reactive oligosaccharides: potential as marker for cells with characteristics of hepatic progenitor cells. N. Sasaki, K. Moriwaki, N.Uozomi, K. Noda, N. Taniguchi, A. Kameyama, H. Narimatsu, S. Takeishi, M. Yamada, N. Koyama, and E. Miyoshi, Glyconj J., Glycoconj J. 2009 Dec;26(9):1213-23. doi: 10.1007/s10719-009-9240-2
PMID:19444603
- Chemoenzymatic Synthesis and Lectin Microarray Characterization of a Class of N-Glycan Clusters. W. Huang, D. Wang, M. Yamada, and Lai-Xi Wang, J. Am. Chem. Soc., Nov.16, 2009. J Am Chem Soc. 2009 Dec 16;131(49):17963-71
PMCID: PMC2791178 / DOI: 10.1021/ja9078539
PMID:19916512
- Testicular Angiotensin-Converting Enzyme with Different Glycan Modification: Characterization on Glycosylphosphatidylinositol-Anchored Protein Releasing and Dipeptidase Activities. G. Kondoh, Ho. Watanabe, Y. tashima, Y. Maeda, and T. Kinoshita, J. Biochem. 2009 145(1)115-121. doi:10.1093/jb/mvn148.
PMID:18984627
- Strategy for Glycoproteomics: Identification of Glyco-Alteration Using Multiple Glycan Profiling Tools (dagger). H. Ito, A. Kuno, H. Sawaki, M. Sogabe, H. Ozaki, Y. Tanaka, M. Mizokami, JI. Shoda, T. Angata, T. Sato, J. Hirabayashi, Y. Ikehara, and H. Narimatsu., J Proteome Res., Mar 6;8(3), pp.1358-1367 (2009). DOI: 10.1021/pr800735j
PMID:19178301
- Focused differential glycan analysis with the platform antibody-assisted lectin profiling (ALP) for glycan-related biomarker verification. A. Kuno, Y. Kato, A. Matsuda, MK. Kaneko, H. Ito, K. Amano, Y. Chiba, H. Narimatsu, and J. Hirabayashi, Mol Cell Proteomics, Jan;8(1), p.99., 2009. doi: 10.1074/mcp.M800308-MCP200
PMID:18697734
- Microarray Methods and Protocols.
Matson, R.S., 2009. CRC Press
- Optimization of evanescent-field fluorescense-assisted lectin microarray for high-sensitive detection of monovalent oligozaccharides and glycoproteins. Noboru Uchiyama, Atsushi Kuno, Hiroaki Tateno, Yoshiko Kubo, Mamoru Mizuno, Midori Noguchi, and Jun Hirabayashi, Proteomics. 2008 Aug;8(15):3042-50. doi: 10.1002/pmic.200701114
PMID:18615430
- Development of a data-mining system for differential profiling of cell glycoproteins based on lectin microarray. Atsushi Kuno, Yoko Itakura, Masashi Toyoda, Yoriko Takahashi, Masao Yamada, Akihiro Umezawa, and Jun Hirabayashi, Journal of Proteomics & Bioinformatics(JPB), Vol.1, p.68 (2008.5). doi:10.4172/jpb.1000011
- Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Atsushi Matsuda, Atsushi Kuno, Hiroyasu Ishida, Toru Kawamoto, Jun-ichi Shoda and Jun Hirabayashi, Biochem Biophys Res Commun. 2008 May 30;370(2):259-63. doi: 10.1016/j.bbrc.2008.03.090
PMID:18375199
- A novel strategy for mammalian cell surface glycome profiling using lectin microarray. H. Tateno, T. Sato, H. Narimatsu, and J. Hirabayashi, Glycobiology. 2007 Oct;17(10):1138-46. DOI: 10.1093/glycob/cwm084
PMID:17693441
- Concept, Strategy and Realization of Lectin-based Glycan Profiling. J. Hirabayashi, J. Biochem. 144, pp.139-147 (2008).doi: 10.1093/jb/mvn043
PMID:18390573
- Glycomics’s Infinite Potential and Applications to Healthcare. M. Yamada, GOR, Vol.9, No.1, p.16 (2007).
- Inhibition of tumor cell-induced platelet aggregation using a novel anti-podaplanin antibody reacting with its platelet-aggregation-stimulating domain. Y. Kato, M. K. Kaneko, A. Kuno, N. Uchiyama, K. Amano, Y. Chiba, Y. Hasegawa, J. Hirabayashi, H. Narimatsu, K. Mishima, and M. Osawa, Biochem Biophys Res Commun. 2006 Nov 3;349(4):1301-7 doi: 10.1016/j.bbrc.2006.08.171
PMID:16979138
- Application of Lectin Microarray to Crude Samples: Differential Glycan Profiling of Lec Mutants. F Youji Ebe, Atsushi Kuno, Noboru Uchiyama, Shiori Koseki-Kuno, Masao, Takashi Sato, Hisashi Narimatsu and Jun Hirabayashi, J Biochem. 2006 Mar;139(3):323-7; doi: 10.1093/jb/mvj070
PMID:16567396
- High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Methods, S. Nakamura-Tsuruta, N. Uchiyama, and J. Hirabayashi, Methods Enzymol. 2006;415:311-25/ doi: 10.1016/S0076-6879(06)15019-3
PMID:17116482
- Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Atsushi Kuno, Noboru Uchiyama, Shiori Koseki-Kuno1, Youji Ebe, Seigo Takashima, Masao Yamada & Jun Hirabayashi, Nat Methods. 2005 Nov;2(11):851-6 / doi: 10.1038/nmeth803
PMID:16278656